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COOLDOWN AND WARMUP OF LARGE 
POWDER -INSULATED DEWARS 

t 
F. Kreith*?, L. Brookst, and J. W. Dean 

Int r oduc ti on. 

Transient heat transfer phenomena related to the use of large storage 

containers for cryogenic liquid propellants have become increasingly impor- 

tant in rocket and missile technology. 

analysis of the heat transfer processes during the cooldown and the warmup 

periods of such containers. 

appropriate type of insulation for ground use or for orbital storage, to p re -  

dict the transient rate of heat transfer to a container during cooldown after 

filling and to estimate the time required for warmup of a cryogenic storage 

container . 

This paper presents a theoretical 

The results can help a designer to select the 

Notation. 

a - inner radius of sphere 

b - outer radius of sphere 

C - specific heat capacity of the insulation 

C - specific heat capacity of the metal wall 
i 

m 

n 
- constant C 

h - unit surface conductance 

k. - thermal conductivity of the insulation 

thermal conductivity of the metal wall  
1 

- 
m k 

L - thickness of the insulation 

q 
T - temperature 

X - perpendicular distance from outer interface of the insulation 

- rate of heat transfer 

* 
Cryogenic Engineering Laboratory, National Bureau of Standards, 
Boulder, Colorado. 

University of Colorado, Boulder, Colorado. 
. - ? %  . . , 



2 

I . 
'I 

a - thermal diffusivity of the insulation 

Em 

n 

- thickness of the inner metal layer of tank wall 

- Eigen value x 
0 - time 

P - density 

C 001 down 

When an insulated storage dewar a t  ambient temperature is filled 

with a liquefied gas ,  considerable time is required before the rate of heat 

transfer to the liquefied g a s  reaches equilibrium. 

have called attention to the fact that although the steady state heat leak can 

always be reduced by thickening the insulation, the optimum design of a dewar 

for minimum heat loss must consider the cooldown period because in many 

practical situations the transfer process never reaches steady state condi- 

tions. Stoy ( 2 )  has calculated the variation in heat loss during the cooldown 

period for  a large vessel  with three different types of insulations, but since 

he used a numerical method his results lack generality and can not readily 

be applied to other cases.  

Blanks and Timmerhaus ( 1 )  

Analytical solutions for the temperature response of a two layer ser ies-  

composite wall, with both materials having finite thermal conductivities, were 

presented in Refs. 3 and 4 for the case of sudden exposure to a uniform en- 

vironment at a different temperature through a constant convection heat t rans-  

fer  coefficient at the surface. Numerical results,  however, were calculated 

only for the case where the thermal conductivity of the layer exposed to the 

heat source was lower than the conductivity of the backup layer whose rear 

face was considered adiabatic. 

wall in which the inverse arrangement of mater ia ls  was present, namely a 

good conductor over an insulator, a r e  presented in Ref. 5. 

problems treated in Ref. 5 encompasses the case of suddenly cooling the wall 

Eigen values for  a two layer series-composite 

Although the 

of a cryogenic storage container initially at a uniform temperature, the 
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specific case under consideration is  amendable to a simpler analysis 

because the difference in the thermal conductivities between the two layers ,  

namely the metal wall and the insulation, i s  very large. 

During cooldown, heat i s  transferred from the inner dewar wall, 

which is initally at  ambient temperature, to the liquefied gas. 

i s  very large and the insulation thickness i s  small compared with the 

diameter , the system can be idealized, without introducing an appreciable 

e r ro r ,  by a two-dimensional slab having the same properties a s  the insula- 

tion. 

gas and the inner surface of the insulation, and also between the outer surface 

of the insulation and the surroundings, a r e  very small compared to the thermal 

resistance of the insulation. 

then be described by the equation 

If the dewar 

It can be assumed that the thermal resistances between the liquefied 

The temperature history of the insulation can 

subject to the following boundary and initial conditions: 

1. ) The temperature a t  the exterior surface (x = 0)  is equal to the tempera- 

ture of the environment which i s  taken as the datum and set equal to zero, or 

2. ) The temperature a t  the inner surface (x = L) i s  equal to the temperature 

of the liquefied gas, or  

T (e, L) = -T  (3 )  
0 

3. ) The temperature in the entire insulation ( 0 5  x i  L) is initially equal 

to the environmental temperature, o r  

T (0, x) = 0 (4) 
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Assuming that the effective thermal conductivity of the insulation k and 

the heat capacity per unit volume of the insulation cp a re  independent of 

temperature, eq. 1 becomes 
3 

a" T 

a x  
- -  - - a  - aT 

2 a e  

If, on the other hand, only the thermal conductivity i s  temperature dependent, 

eq. 1 can be written in the form 

a2T 1 

a e  a x  2 PCi 

- -  - - a -  - -  aT 

which also reduces to eq. 5 if the temperature coefficient of the thermal 

conductivity is small compared to the heat capacity per unit volume and the 

thermal diffusivity is  uniform and constant. 

An analytical solution of eq. 5 for the boundary conditions describing 

the system under analysis can be found in Ref. 6. 

condition T(0,  x) = 0 into this solution, it can be shown (7)  that the following 

equation gives the temperature distribution at  any time 8: 

Substituting the initial 

The rate of heat transfer per  unit a r ea  from the liquefied g a s  is equal 

to the rate of heat conduction to the inner surface of the insulation, or  
2 2  

-(a n T 0 ) - 
00 2 T 

9 , z - k  - aT (e,O) = ki O [ l t 2  1 e A i a x  
n=l 

The ratio of the rate of heat transfer at  any time 0 after filling to the rate 

of heat transfer in the steady state is obtained by dividing eq. 8 by kT /L, or  
0 
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0 

‘I 2 2  
- ( a n  TT 8 ) 
5 

2 
L 

- q( 0) = 1 t 2  2 e 
‘steady state n=1 

( 9 )  

Fig .  1 shows the ratio of the rate of heat transfer at  time 8 to the steady 

state heat loss as a function of the dimensionless Fourier modulus a8 /L . 
Fig. 2 shows q(8)/q (steady state) as a function of time for vessels insulated 

with 30. 5 c m  (a 1 ft. ), 61 cm (z 2 ft. ), and 91. 5 cm (z 3 ft. ) thicknesses of 
-4  2 - 4  

an insulation having a thermal diffusivity of 1. 8 x 10 

ft /hr. ). 

2 

. 

em /see. (= 7 x 10 
2 

For a spherical dewar, an equation for the transient rate of heat 

transfer can be similarly derived from Ref. 6 and put into the form 

- ( a n  2 2 e  TT 

00 (b-a) 

‘steady state 
= 1 + 2  - a ‘ 7  e 

b L, 
n= 1 

A comparison of equations 9 and 10 shows that the effect of the spherical 

shape is to reduce each t e rm in the ser ies  solution for the slab by the factor 

(a/b). 

of time for a 55, 000 gallon spherical tank with an inside diameter of 732 cm 

(a 24 ft. ) and an insulation thickness of 91. 5 cm (a 3 ft. ). 

The dotted curve in Fig .  2 shows q( 8)/q (steady state) as a function 

If the heat capacity of the inner metal wall of a dewar can not be 

neglected compared to the heat capacity of the insulation, but the Biot 

Number (hs/k 

resistance is negligible, it is apparent that equation 7 remains unaffected (8). 

This situation will generally prevail when the dewar wall consists of powder 

or  multiple layer insulation, sandwiched between two metal sheets. 

additional factor to be considered in this case is the vaporization of liquefied 

g a s  which will occur immediately after filling the tank as the inner metal wall 

) of the metal wall i s  sufficiently large that i ts  own thermal 
m 

The only 
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approaches the temperature of the liquefied gas. 

an amount of energy equal to the change in internal energy of the inner metal 

wall of the dewar will be transferred a s  heat to the liquefied gas and increase 

i t s  enthalpy approximately by an amount Ac p 6 where A is the inner sur-  

face a rea  of the entire tank. 

eq. 9 or 10 will apply since no further change in wall temperature will take 

place. However, since in practice the initial evaporation i s  quite vigorous, 

the effect of the heat capacity of the wall does not affect the transient analysis 

for the insulation alone appreciably. 

Warmup 

During this short interval 

m m m  
After the initial vaporization has occurred, 

After a cryogenic storage container has been emptied, it i s  often 

necessary to warm i t  back up to the temperature of the environment in order 

to check or install instruments, remove impurities, or  make adjustments 

before refilling. 

of very low thermal conductivity, the period of warmup may be very long. 

One method of accelerating the warmup is to break the vacuum in the insula- 

tion at  least  to a point where the thermal conductivity increases sharply as 

shown in Fig.  6 of Ref. 10. 

variety of gases and in order to select the most appropriate medium it is 

necessary to investigate the warmup process. 

designed to make a time estimate of the transient condition. 

Since most cryogenic vessels a r e  insulated with materials 

The vacuum can be broken by introducing a 

The following analysis is 

The basic equation describing the system is the same as for the 

cooldown. 

connected through a very large thermal resistance to the heat reservoir 

and must be taken into account. 

require application of eq. 1 to both the inner wall and the insulation of the 

dewar and connecting these two sub-systems by the f i r s t  law of thermo- 

dynamics which requires continuity of heat flow at the interface between 

However, the thermal capacity of the inner metal layer is now 

An exact solution of the system would 



them. A solution to these two simultaneous partial differential equations 

is theoretically feasible (3 ,  5) ,  but very complicated. 

however, the thermal conductivity of the metal wall is so much larger  than 

the thermal conductivity of the insulation that one can approximate the metal 

layer in the system by a lumped thermal capacity. 

can then be stated in t e rms  of eq. 1,  subject to the following boundary and 

initial conditions: 

In cryogenic containers 

The problem to be solved 

1. ) At the outer surface the temperature of the dewar wall i s  equal to that 

of the environment, taken to be the datum and set equal to  zero, or 

2. ) At the interior of the insulation the rate of heat transfer to the inner 

metal wall must be equal to the rate of increase in internal energy of that wall 

or  

3. ) The initial temperature distribution in the insulation is 

T x  

L 
0 01 x l  L T (0, X )  = - 

the temperature of the inner metal wall is uniformly T 

datum. 

degrees below the 
0 

By the separation of variable method it can be shown (8) that the 

solution to equation 13 can be written 

r 

2 - a e X  
-1 

cos ( X x) t C sin (1 x) n 

which reduces after applying the f i rs t  boundary condition to 
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2 - a e A  

T (e, X) = c sin ( A  x) e n 

The initial condition is satisfied for any value of A which satisfies 

the transcendental equation 

The temperature distribution is, therefore, given by the relation 

2 
n 

00 - a e A  

sin ( A  x) n e T 
'n T (e, x) = 

L J  
n= 1 

where X a r e  the Eigen values obtained from eq. 16. Since the boundary 

conditions at x = L are homogeneous, the solutions in x a r e  an orthoganal 

set (9) and C Following standard methods one 

obtains after some rearrangement 

n 

can easily be determined. n 

sin (L  A ) - L A cos (L  A ) 
/ 2 T O \  n n n 

Substituting eq. 18 for C in eq. 17 gives finally the following relation for 

the temperature distribution at  time 8: 
n 

* sin (X x) n 

The temperature at the inner face is then obtained by setting x equal to L 

in eq. 19. The curves in Fig. 3 show the ratio of the temperature of the 
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inner surface of the dewar to i ts  initial temperature as a function of the 

dimensionless Fourier modulus a8/L 

of the inner metal wall, c p 8 ,  to the heat capacity of th.e insulation, 

c.p.L, as a parameter. 

that the smaller the ratio of heat capacities, the faster  the tank will warm 

UP. 

2 
with the ratio of the heat capacity 

m m  
It is apparent f rom an inspection of these curves 

1 1  

Fig. 4 is derived from Fig.  3 for the purpose of calculating the time 

required for a liquid hydrogen dewar to warm to 90°K or to the ice point. 

Once the heat capacity ratio for a dewar is known, the corresponding Fourier 

modulus is established. 

and thickness allows time to be calculated from the Fourier modulus. 

A knowledge of the insulation thermal defusivity 

Fig. 5 shows the temperature during warm up for a typical powder- 

insulated liquid hydrogen dewar with a 1. 0 cm thick inner metal wall and a 

30. 5 cm ( 1  ft. ) thick insulation. 

the vacuum was broken with hydrogen or helium and that the insulation 

thermal conductivity is essentially that of the gas.  

results obtained using nitrogen to  break the vacuum. 

5 and 6 shows the desirability of using hydrogen or  helium as the break gas. 

An experimental evaluation of the transient warmup of large powder insulated 

dewars is being conducted by the Los Alamos Scientific Laboratory. 

data indicates good agreement with the curves of F ig .  5 and 6. 

F o r  this calculation it was assumed that 

Fig. 6 presents similar 

A comparison of Fig.  

Preliminary 
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